Effects of glucagon-like peptide 1 and oxyntomodulin on neuronal activity of ghrelin-sensitive neurons in the hypothalamic arcuate nucleus.

نویسندگان

  • Thomas Riediger
  • Nicole Eisele
  • Caroline Scheel
  • Thomas A Lutz
چکیده

Glucagon-like peptide 1 (GLP-1) and oxyntomodulin (OXM) are structurally related gastrointestinal hormones that are secreted in response to food intake. They reduce food intake and body weight and exert partly overlapping actions on glucose homeostasis and gastrointestinal function. The hypothalamic arcuate (ARC) nucleus is among the central structures expressing a high density of GLP-1 receptors (GLP-1R), which are known to be activated by both peptides. It was the aim of our electrophysiological studies to characterize the effects of GLP-1 and OXM on functionally defined ghrelin-sensitive ARC neurons. GLP-1 and OXM (10(-7) M) exerted excitatory effects in about two-thirds of ghrelin-inhibited neurons and in approximately one-third of ghrelin-excited cells. In addition, a minor fraction of the ghrelin-excited cells was inhibited by both peptides. There was a high degree of cosensitivity to GLP-1 and OXM, and the effects of both hormones were blocked by the GLP-1R antagonist exendin(9-39). The GLP-1R-mediated excitations and inhibitions persisted under synaptic blockade, indicating a direct postsynaptic mode of action. Our results demonstrate that GLP-1 and OXM directly and similarly alter neuronal activity in the ARC, probably via a common GLP-1R-mediated mechanism. Ghrelin-antagonistic effects on neuronal activity, which might be implicated in ghrelin-antagonistic in vivo actions, resulting from GLP-1R stimulation (e.g., GLP-1R dependent supression of food intake), predominated in ghrelin-inhibited ARC neurons. However, a subset of ghrelin-excited ARC neurons showed responses to OXM or GLP-1, suggesting the existence of a common mode of action for these hormones; the functional relevance of this effect remains to be elucidated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peptides and Food Intake

The mechanisms for controlling food intake involve mainly an interplay between gut, brain, and adipose tissue (AT), among the major organs. Parasympathetic, sympathetic, and other systems are required for communication between the brain satiety center, gut, and AT. These neuronal circuits include a variety of peptides and hormones, being ghrelin the only orexigenic molecule known, whereas the p...

متن کامل

Peripheral oxyntomodulin reduces food intake and body weight gain in rats.

Oxyntomodulin (OXM) is a circulating gut hormone released post prandially from cells of the gastrointestinal mucosa. Given intracerebroventricularly to rats, it inhibits food intake and promotes weight loss. Here we report that peripheral (ip) administration of OXM dose-dependently inhibited both fast-induced and dark-phase food intake without delaying gastric emptying. Peripheral OXM administr...

متن کامل

Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure.

BACKGROUND & AIMS Gut-derived peptides including ghrelin, cholecystokinin (CCK), peptide YY (PYY), glucagon-like peptide (GLP-1), and GLP-2 exert overlapping actions on energy homeostasis through defined G-protein-coupled receptors (GPCRs). The proglucagon-derived peptide (PGDP) oxyntomodulin (OXM) is cosecreted with GLP-1 and inhibits feeding in rodents and humans; however, a distinct receptor...

متن کامل

Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats.

Ghrelin is a 28-amino acid peptide hormone secreted from the stomach that acts as a gut-brain peptide with potent stimulatory effects on food intake. The aim of the present study was to investigate the effects of peripheral ghrelin (1 and 10 nmol/rat) injected intraperitoneally (i.p.) on food intake and neuronal activity in the hypothalamus and brain stem, as assessed by c-Fos-like-immunoreacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 298 4  شماره 

صفحات  -

تاریخ انتشار 2010